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of networks of discrete fractures. In this study, we use the numerical simulator CFRAC
to analyse pressure drops commonly observed during stimulation of deep geothermal
wells. We develop a conceptual model of a fractured geothermal reservoir to analyse
the conditions required to produce pressure drops and their consequences on the
evolution of seismicity, fluid pressure, and fracture permeability throughout the system.
For this, we combine two fracture sets, one able to be stimulated by shear-mode
fracturing and another one able to be stimulated by opening-mode fracturing. With
this combination, the pressure drop can be triggered by a seismic event in the shear-
stimulated fracture that is hydraulically connected with an opening-mode fracture.
Our results indicate that pressure drops are not produced by the new volume created
by shear dilatancy, but by the opening of the conjugated tensile fractures. Finally, our
results reveal that natural fracture/splay fracture interaction can potentially explain the
observed pressure drops at the Rittershoffen geothermal site.

Keywords: Enhanced geothermal reservoirs, Pressure drops, Reservoir simulation,
Induced seismicity, Fracture networks

Introduction

Geothermal energy development, either for electricity generation or for direct applica-
tions of geothermal heat, can be carried out in a wide range of geological settings. In
the case of active tectonic zones with abnormally high geothermal gradients, such as
Iceland, Italy, New Zealand or Turkey (Moeck 2014), geothermal energy can be widely
exploited at shallow depths. However, geothermal projects usually need to exploit
deeper reservoirs in regions where radiogenic igneous rocks are not present or where
the tectonic activity is minor. In recent years, the exploration and exploitation of deep
geothermal reservoirs have significantly increased worldwide (e.g. Tester et al. 2006;
Breede et al. 2013; Kirdly et al. 2015). In this context, geothermal projects focusing on
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heat distribution (low and medium enthalpy) have mainly targeted crystalline base-
ment rocks or large and deep sedimentary basins, such as intracratonic basins and
foredeep orogenic belts, as well as continental rifts. Projects focusing on power genera-
tion in high-temperature, low-permeability settings generally need to be developed as
Enhanced Geothermal Systems (EGS), either in fractured crystalline basement rocks, or
in sedimentary and volcanic rocks (Zimmermann and Reinicke 2010; Elders et al. 2014).

Although deep, naturally fractured tight reservoirs are normally characterised by the
presence of pre-existing fracture networks that provide some permeability. In most
cases, the presence of rocks with low permeability prevents the economic feasibility of
the project. Exploitation of low-permeability geothermal reservoirs requires the use of
hydraulic stimulation techniques to enhance the permeability of the reservoir, increasing
fluid flow and heat transfer between injection and extraction wells (Zimmermann and
Reinicke 2010; Schill et al. 2017). However, stimulation processes sometimes produce
induced seismicity, a hazard that needs to be mitigated to ensure the social acceptance
and viability of the project. Normally, when this type of seismicity is low in magnitude, it
is rarely felt and is referred to as microseismicity. Nevertheless, in some cases, the events
may have high enough magnitude to be noticed at the Earth’s surface, putting in risk
the viability of the project (e.g. Majer et al. 2007; Haring et al. 2008; Dempsey and Suck-
ale 2015). In such contexts, it is essential that we understand the fundamental processes
involved in the hydraulic stimulation phase to reduce seismic risks and characterise the
uncertainty of seismic hazard estimates.

Recently, Meyer et al. (2017) reported a strange phenomenon observed during the
stimulation of the GRT1 well of the Rittershoffen geothermal power plant (Baujard et al.
2017). This consisted of a series of pressure drops (between 4-10~3 MPa and 0.16 MPa,
Fig. 1a) during fluid injection that, according to these authors, seemed to be linked with
or followed by a cluster of seismic events (with magnitudes ranging between 0.3 and
1.3; Meyer et al. 2017; Fig. 1b). For systems where permeability is dominated by the pre-
existing fracture network, key factors that could produce a sudden pressure drop in the
system are the rapid generation of permeability or the sudden increase of fluid storage
capacity of the fracture network. Although most EGS projects have typically assumed
that stimulation occurs principally through shear reactivation of pre-existing fractures,
an alternative explanation is the so-called mixed-mechanism stimulation (McClure and
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Fig. 1 a Injection flow rate and fluid pressure drop amplitude during fluid stimulation of the GRT1 well at
the Rittershoffen geothermal reservoir. b A detail of the fluid pressure registered at the well showing two

examples of pressure drops and the associated seismicity swarm (Figure modified from Meyer et al. (2017))
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Horne 2014; Norbeck et al. 2018). The mixed-mechanism stimulation involves both (1)
shear stimulation by reactivation of previous fractures and (2) the development of new
tensile fractures as bridges between pre-existing fractures.

Meyer et al. (2017) proposed three main hypotheses to explain the mechanisms asso-
ciated with pressure drops and the triggering of induced seismicity. The first hypothesis
considers that pressure drops are caused by fracture reactivation and slip with associ-
ated microseismicity. In the second hypothesis, they suggest that the phenomenon can
be due to pressure equilibration during the connection between the stimulated/hydrau-
lic fractures and the pre-existing ones. When a pressurised hydrofracture (i.e. a new
fracture in the reservoir formed during hydraulic stimulation) gets connected with an
unpressurised pre-existing fracture, additional fluid storage space is suddenly generated
and, as a consequence, a pressure drop can occur. When fluid pressure recovers, stimu-
lation of the newly connected fracture causes instability and slip takes place creating a
swarm of seismic events. Finally, the third hypothesis considers that the pressure drop
is produced by the propagation and opening of new cracks (i.e. tensile fractures) as wing
cracks growing from pre-existing fractures (e.g. Norbeck et al. 2018). During the sliding
stimulation phase of a pre-existing fracture, there is a relative displacement between the
two fracture walls. This can induce the growth of tensile cracks at their tips, if the tensile
strength of the rock is overcome. Such new cracks would also cause a sudden increase of
permeability and an associated pressure drop. After running a series of numerical mod-
els, Meyer et al. (2017) concluded that the most plausible hypothesis to explain pressure
drops is the propagation of new tensile fractures, although their study was not conclu-
sive and suggested that further work was required.

Both hypotheses 2 and 3 proposed by Meyer et al. (2017) share the condition that pres-
sure drops occur in systems that contain or develop at least two sets of fractures at dif-
ferent orientations with respect to the stress field. As previously demonstrated by several
studies (e.g. Garagash and Germanovich 2012; Gischig 2015; Piris et al. 2017), rupture
propagation and sliding/tensional behaviour on fluid pressurised fractures depend on
their relative orientation with respect to the principal stress axes. Fractures with strikes
oriented at moderate angles with the maximum compressive stress (o;) are character-
ised by reactivation by sliding and/or opening, and are considered seismically active. In
contrast, fractures at low angles with ¢; have the capacity of being stimulated by open-
ing mode and present either an aseismic behaviour or very low-magnitude seismicity
(Piris et al. 2017). The new formation or reactivation of the latter set of fractures (i.e., at
low angles with o07) can potentially result in a sudden permeability increase due to their
ability to dilate at relatively low fluid pressure. Accordingly, if both fracture sets are con-
nected when a fracture at a moderate angle is reactivated, the slip would induce opening
of the aseismic fracture and will, thus, cause a pressure drop. The understanding of this
process can potentially be used to identify patterns of the mixed-mechanism stimulation
during hydraulic stimulation treatments.

In this study, we present a conceptual model where natural fractures are hydrau-
lically connected by tensile splay fractures. Our overarching aim is to understand the
influence of different properties of fracture sets on the system pressurisation and their
consequences for seismicity propagation and fault pressurisation in a generic deep
geothermal reservoir. We present numerical simulations based on simple fracture
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geometries, avoiding complex fracture networks, to investigate how pressure drops are
related to stimulation and induced seismicity. Our results reveal a direct link between
pressure drops and seismicity in systems involving two different fracture sets that are
hydraulically connected. Seismicity is produced by sliding of a shear-mode fracture that
induces a sudden opening of connected hydraulically tensile fractures, thus triggering
the pressure drop.

Methods

The numerical simulations were carried out with the two-dimensional version of the
boundary element reservoir simulation code CFRAC (McClure 2012). This software
is able to solve the fully coupled hydro-mechanical problem related to the injection of
fluid through a fracture network embedded in an impermeable matrix and the associ-
ated induced seismicity (McClure and Horne 2011, 2013, 2014). These conditions are
those typically found in deep geothermal reservoirs in crystalline basement rocks, where
matrix permeability is nearly zero and flow occurs predominantly through fracture net-
works. The full-field fluid flow evolution and the reactivation of pre-existing fractures
(by opening and/or sliding) are solved simultaneously. In these simulations, the fluid is
assumed to be single phase (liquid water) and thermal effects are neglected (i.e. simu-
lations are carried out in isothermal conditions). The simulation is initialised under
homogeneous, anisotropic stress field conditions and with a homogeneous fluid pres-
sure distribution. CFRAC can simulate both pre-existing fractures and new hydraulically
formed fractures. However, the location of potentially forming fractures is defined in
advance. The frictional resistance to slip is given by Coulomb’s law (Segall 2010):

|t —nvl = pg(on — P) + So, (1)

where 7 is the shear stress, # is the radiation damping coefficient, v is the sliding velocity
of the fracture, 4 is the friction coefficient, o, is the normal stress, P is the fluid pres-
sure and S, is the fracture cohesion. The evolution of the friction coefficient was defined
using a rate-and-state formulation where this parameter depends on the sliding velocity
and the sliding history of the fracture (Scholz 2002; Segall 2010). In terms of aperture
change with slip, the approach evaluates separately the changes in fracture conductivity
(i.e. hydraulic aperture) and pore volume (i.e. void or mechanical aperture) using two
dilatation angles. For a more detailed description of the mathematical formulation used
by CFRAC, see McClure (2012) or McClure and Horne (2013).

Model setup

The initial geometry of the model consisted of a single fracture defined by several
linked segments with different orientations with respect to the maximum compres-
sive stress (07). Each individual fracture had a length of 60 m and was discretised into
20-cm-long elements (Fig. 2). The fracture element size was further refined near frac-
ture intersections (with a minimum element size of 0.02 m). A constant out-of-plane
thickness of #=100 m was considered for all models. Segments were orientated at
a=60" and o =88°, where « is the angle between o; and the normal of the fracture
segment (Fig. 2). These angles were selected because previous studies demonstrated
that these orientations result in a highly variable range of seismic behaviour during
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Fig. 2 Geometry of the “60-88"model. The blue line represents the fracture configuration and the blue
dot the injection point. Each fracture segment is 60-m long. Orientation and values of principal stresses are
indicated

fluid injection (Garagash and Germanovich 2012; Gischig 2015; Piris et al. 2017).
Fractures at @ =60° are characterised by a critically loaded behaviour, with high asso-
ciated seismicity and ruptures that can propagate through the entire fracture. Frac-
tures at a = 88° are characterised as having an aseismic orientation, with slow sliding
velocities and are, thus, unable to produce seismicity (e.g. Piris et al. 2017).

Fluid injection was performed at the centre of the model. To evaluate the influence
of the orientation of fractures in which the fluid was injected, two types of models
were investigated: (1) the model named “60-88” in which the segment chosen for
injection had an orientation of a =60° (as shown in Fig. 2) and (2) the model “88-60"
in which the segment where the fluid was injected was oriented at « =88°. Finally,
we carried out additional simulations on a modified version of the “60—88” model to
evaluate the effect of pressure drops with the propagation of hydraulic fractures. In
such models (termed model “60-hydro”), we combined & =60° segments with hydrof-
ractures (i.e. tensile opening fractures) as wing cracks. In terms of numerical simula-
tion, the main differences between the simulation setup of a pre-existing fracture or
wing crack models are that (1) the tensile strength has to be overcome to initiate the
wing crack and (2) the rate of fracture generation or propagation is determined by
calculating a stress intensity factor at the fracture tips. This approach is similar to that
used by other authors who modelled hydrofracture stimulation (McClure 2014; Zeeb
and Konietzky 2015; Meyer et al. 2017). A summary of the mechanical parameters
used in this study is shown in Table 1.
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Table 1 Friction and fracture parameters used in the simulations

Parameter Description Value Source

Ey Mechanical aperture 1200 um Arbitrary (common values) (McClure 2012;

Okrye Reference normal traction (mechanical 25 MPa Gischig 2015)

aperture)

Eres Residual mechanical aperture 2um

Qegil Dilatation angle (mechanical aperture) ~ 0°/2.5°/5° (Willis-Richards et al. 1996; Kohl and Mégel
2007)

=N Hydraulic aperture 120 pm Arbitrary (common values) (McClure 2012;

Oanef Reference normal traction (hydraulic 25 MPa Gischig 2015)

aperture)

€es Residual hydraulic aperture 0.2 um

Prail Dilatation angle (hydraulic aperture) 2.5° Arbitrary (good coupling)

o Fluid density 1000 kg/m?®  Water values at 20 °C

u Fluid viscosity 0.001 Pa's

h Out-of-plane dimension 100 m To obtain representative magnitudes

n Radiation damping coefficient 3 MPa/(m/s)  Arbitrary (common value) (McClure 2012)

So Cohesion 0 MPa Assumption

G Shear modulus 15 GPa Arbitrary (common value)

v, Poisson’s ratio 0.25 Arbitrary (common value)

fo Nominal friction coefficient 0.85 Arbitrary (common value) (Haring et al.
2008; Gischig 2015)

d. Characteristic displacement scale 100 pm Gouge material (Marone and Scholz 1988;
Scholz 2002; Gischig 2015)

Velocity effect coefficient 0.01 Scholz (2002)
State effect coefficient 0.02

Vo Reference velocity 10~ m/s Arbitrary (common value)

Brs State 261005 Rubin and Ampuero (2005); Gischig (2015)

Tor Matrix tension strength 3 MPa Arbitrary (common value)(McClure 2014)

K1 rithe Stress intensity factor 1.5 MPa m"?  Arbitrary (common value)(Zeeb and Koni-

etzky 2015; Meyer et al. 2017)

For all the models, the geothermal reservoir was assumed to be at a depth of 4500 m,
with an initial fluid pressure defined by the hydrostatic gradient. We assumed a strike-
slip regime in which the principal stresses o, and o5 are horizontal (parallel to the y- and
x-axis of our model, respectively; Fig. 2) while o, is vertical (i.e. oriented out-of-plane in
the models). A minimum in situ stress of 76 MPa was imposed in the x-direction, while a
maximum horizontal stress of 185 MPa was applied in the y-direction. A constant injec-
tion pressure of 70 MPa was imposed, with a maximum injection rate of 10 kg/s. The
duration of simulation was set to be high enough to pressurise almost the entire domain
(¢ =50,000s).

A series of additional models were run to evaluate the influence of key parameters on
the pressure drop phenomenon. These include the dilatancy effect, the scale effect and
the model setup similar to that of the Rittershoffen geothermal reservoir. To evaluate
the sensitivity of the models to the mechanical dilation angle (i.e. the dilatancy effect,
defined as the increase of fracture volume by shear displacement), additional models
were run with dilation angles (¢rq;) of 2.5° and 5°. The potential sensitivity of the length
scale was evaluated in the model “88-60" using fracture segments with lengths of 50 m,
40 m, 30 m, 20 m, 15 m, and 6 m. Finally, with the aim of comparing numerical predic-
tions with field observations of seismicity coupled with pressure drops, several models
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with different length scales (i.e. 80 m, 60 m, 50 m, 40 m, 30 m, 20 m, 15 m and 6 m) were
run using a configuration similar to that utilised during the stimulation of the Rittershof-
fen geothermal reservoir (Cornet et al. 2007; Baujard et al. 2017; Meyer et al. 2017). For
these models, the parameters that were varied with respect to the previous ones were
the stress state (6,=50 MPa, 0,=29 MPa), the initial fluid pressure of 23.7 MPa and a
constant injection pressure of 28 MPa.

Results

The main parameters analysed in our simulations were the fluid pressure evolution, the
fracture apertures, the earthquake hypocentre locations, and the earthquake magni-
tudes. These parameters were used to highlight differences between models.

Model “88-60"

The evolution of fluid pressure, fracture aperture and hypocentre locations are shown
in Fig. 3. Microseismicity was observed in both segment orientations, with magnitude
events spanning up to M =2.5. The events with the highest magnitudes were systemati-
cally located along the o =60° segments, while the segments oriented at « =88° recorded
lower-magnitude events (with maximum magnitudes of M <1.5). The fluid pressurisation
of the fracture was not homogeneous, with several abrupt events in which fluid pressure
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Fig. 4 Variation of the a fluid pressure in the well and b the injection rate with increasing stimulation time.
The magnitude of the seismic events is indicated by red circles. In general, events with larger magnitudes
are linked to fluid pressure drops in well, although a swarm of low-magnitude earthquakes is observed after
pressure drops. Additionally, pressure drops are linked to peaks of the injection rate

drops were linked with seismic events. Initially, the fluid batch expanded homogenously
along the a=288° segment until it reached the intersection between two fracture seg-
ments. Seismic events and local pressure drops were generated from this point. Most
of the hypocentres were located next to the intersection between fracture segments and
near the pressurisation front. However, low-magnitude events were also observed in
the central part of the model, along the & =88° segment. With progressing injection, the
fluid reached the following fracture intersections and hypocentres, thus, shifted to these
regions. Larger-magnitude events (M > 1.5) were able to produce stronger pressure drops
able to be transmitted along the entire fracture system, and thus being ultimately detect-
able at the well (Fig. 4a). Pressure drops in the well ranged between 0.5 and 3 MPa. Fur-
thermore, pressure drops felt in the well were correlated with increases in injection rate
due to permeability enhancement (Fig. 4b). The time lapse between the main earthquake
event and the associated well pressure drop was found to be lower than 2 s. This time
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and t+ 2000 s) a seismic event (indicated by a red star) for the “88-60"model. The event corresponds to
the red dashed area indicated in Fig. 3. Vertical dashed lines indicate the location of fracture segment
intersections

lapse increases with the distance from hypocentre to the well. The evolution of fracture
apertures was characterised by two stages. In the early stage, before the stimulation of
a=60° segments, fracture apertures increased from the well in the same direction as that
of the migration of the fluid pressure front (£<0.5 x 10* s; Fig. 3b). In the second stage,
after stimulation of the a=60° segments, fracture apertures expanded from fracture
intersections towards the well, in a direction opposite to that of the expansion of the fluid
pressure front. The highest observed apertures corresponded to the a=88° fractures,
with values reaching 0.027 m, while apertures slightly increased for @ = 60° segments.

Snapshots of the fluid pressure before (¢—10 s, where ¢ is the time of the main seis-
mic event) and after (¢+ 10, £4+400 and £+ 2000 s) the main seismic event of M =1.96
(indicated by the red dashed line in Fig. 3) are shown in Fig. 5. Strong variations of
fluid pressure were observed before the onset of the seismic event near the intersection
between segments. At t+4 10 s after the seismic event, a strong fluid pressure decrease
was observed in the intersection segment and along a=88° segment fractures. With
increasing time (£+400 s and £+ 2000 s in Fig. 5), the fluid pressure recovered quickly in
the injection segment next to the well, while fluid pressure recovery was slow in the rest
of the fracture, especially at the intersection near the location of the seismic event.

The evolution of fracture aperture is displayed for the same event in Fig. 6 for several
control points next to the fracture intersections. Fracture apertures showed different
trends depending on the distance to the intersections, and an aperture increase was not
always observed for all monitoring points. While fracture apertures at the points located
at the seismic segment remained approximately constant or slightly decreased (points
3 and 4 in Fig. 6), the evolution of apertures for the o =88° segment showed aperture
increases for control points next to the intersections (points 2 and 5 in Fig. 6). Apertures
initially decreased and then increased (or remained constant) for control points located
away from the intersections (points 1 and 6 in Fig. 6).

Model “60-88"
Fluid pressure and fracture aperture evolution through time are shown in Fig. 7. In this
case, the well was located at a critical seismic fracture (@ =60°). Microseismicity was
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detectable from early stages of injection and expanded from the well towards the first
fracture intersection (Fig. 7). Abrupt decays of fluid pressure were linked with seismic-
ity, although they did not produce detectable pressure drops at the well. In general,
microseismic events occurred near the intersection regions, although several low-mag-
nitude events were observable in the a =88° fractures behind the pressurisation front.
Progression of the fluid along the fracture produced a migration of hypocentres until
they reached the intersection of the last fracture, producing a large batch of events with
strong ruptures (Fig. 7, at approx. t=4.5 x 10* s). The evolution of fracture apertures
showed similar patterns as in the previous case (88—60 model), with the maximum aper-
tures propagating from fracture intersections following the aseismic a=88° fractures
(Fig. 7b).

The event with magnitude M =2.1 and hypocentre in the a =60° segment was analysed
for the model “60—-88” (Figs. 8, 9) (red dashed line in Fig. 7). In general, fluid pressure
curves and patterns are similar to those of the previous case (Fig. 8). For this configura-
tion, the pressure drop was not felt at the well (Fig. 8). The aperture evolution was not
homogenous and control points generally showed a decrease of the fracture aperture.
Aperture increases occurred only next to the intersection and along the o =88° segment
(point 3 in Fig. 9), followed by a region where the aperture decrease was followed by a
constant increasing value (point 2 in Fig. 9).

Model “60-hydro”

Figure 10 shows the evolution of fluid pressure, fracture aperture and microseismic
event magnitude and location of the model defined by a pre-existing fracture with two
potential tensile cracks at their tips (i.e., wing cracks; red lines in Fig. 10). As in previ-
ous models, the events with higher magnitudes were located at the pre-existing segment
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(¢ =60°), while wing cracks only registered low-magnitude events linked to the propaga-
tion of the fluid pressure front. The propagation of this front along wing cracks was rela-
tively slow compared to previous models with pre-existing fractures (models “88—60” or
“60—-88”). Pressure drops were also identified and linked to seismic events at the a =60°
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segment (Fig. 10 at around =1 x 10* s). The widest fracture apertures were observed
along wing cracks, while the aperture of the natural fracture slightly increased.

Sensitivity analysis

All the model configurations (i.e. models “88-60", “60—88” and “60-hydro”) were run
with different values of mechanical dilation angles (¢p4;=0°, 2.5° and 5°) to test their
influence on fracture aperture and pressure drops. The cumulative apertures increased
half an order of magnitude in the seismic segments (¢« =60°) when large dilation angles
were used, while apertures only slightly increased in the aseismic segments (a=88°)
(Fig. 11). The total aperture change (normalised by length) was between two and one-
and-a-half order of magnitude higher in the aseismic segment than that produced in the
seismic segment (Fig. 11). The sharp steps of the accumulated aperture in Fig. 11 corre-
late with seismic events, while slight and progressive fracture aperture increases charac-
terise the progressive aseismic deformation.

The dilatation angle also plays a secondary role in the occurrence of pressure drops
at the well and in the bulk model (Fig. 12a). This tendency depends on the geometrical
configuration of the model. While in the “88—60” model configuration, there was a pres-
sure drop decrease at the well with increasing dilatation angles (from an average of 1.25
to 0.4 MPa), in the “60—-88” models, the tendency was the opposite, in a way that pres-
sure drops raise with increasing dilatation angles (from 0 to 1 MPa on average). The “60-
hydro” model followed a similar tendency to that observed in the “60—88” model.

Finally, the influence of the length scale of the fracture segments on the pressure drops
is summarised in Fig. 12b. Using as a reference the model “88-60" and ¢4;=0°, differ-
ent runs were carried out with different segment sizes (60 m, 50 m, 30 m, 20 m, 15 m,
and 6 m). Systematic pressure drops in the well and in the entire domain were identified
and the mean values were calculated. There was a systematic decrease of the pressure
drop values throughout the system with decreasing segment length (from 6 MPa for the
60-m-length model to 1.5 MPa for the 6-m model). Pressure drop values in the well were
very similar, although there was an increase of ranging between 30 and 15 m (Fig. 12b).

Page 13 of 21
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Discussion

Pressure drop mechanism

The results of our numerical simulations demonstrate that a direct link between seis-
micity and pressure drops can be established. The formation of pressure drops seems to
be related to the activation of slip along a pre-existing fracture during seismic events in
regions near fracture intersections. This process operates in a series of steps summarised
in Fig. 13.

In situations where the fluid is injected in a fracture segment at a low angle with o; (e.g.
model “88-60"), the fracture high fluid storage capacity or transmissibility allows it to be
initially pressurised without seismicity. Once the pressure front reaches the intersection
between fracture segments, and a seismic segment is stimulated, microseismicity occurs.
When the tensile strength is overcome in the seismic segment (i.e.,  =60°), the fracture
slides and the relative displacement between walls induces stress concentration at frac-
ture tips. In our models, this stress was high enough to open the tensional segments,
producing a slight decrease of fluid pressure next to the intersection zones (for exam-
ple see Fig. 3 around £=0.5 x 10* 5). After that, a time lapse is required to re-pressurise
the region prior to the onset of a new pressure drop. This pressurisation is followed by
new seismic events that assist the opening of additional tensional segments. These pro-
cesses are repeated until all the seismic segments are completely stimulated. While the
injected fluid progressively flows from the well throughout the fracture network, seismic
events migrate from intersections located next to the injection well to more distant ones.
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Tensional segments are stimulated as aseismic segments or result in seismic events with
very low magnitude. Larger events are located along seismic fractures and tend to occur
near the intersections. With ongoing stimulation, seismic events progressively occur
at longer distances from the injection point and the induced pressure drops are, thus,
hardly observable by looking at the fluid pressure measured at the well. Nevertheless,
they are continually happening, as illustrated in Figs. 3, 7 and 10 or in Fig. 12b, in which
the difference between pressure drops at the well and in the simulation domain increases
with increasing of fracture length.

In cases where fluid injection is carried out in a low-transmissivity fracture segment
(model “60—88”; Fig. 7), pressure drops are difficult to be detected at the injection point.
The fracture acts as a barrier for the pressure drop propagation due to its low storage
capacity and low hydraulic aperture. The process producing pressure drops operates in a
similar way as in the model previously described. When the tensile strength is overcome
in a seismic segment, a sudden aperture change of the intersection is induced, causing
the aseismic/tensional segments (i.e., high-capacity fractures) to get open, generating a
new volume and producing the pressure drop (for example, see those at £~ 3.25 x 10* s
in Figs. 7, 8 and 9 or between t=4 and 4.5 x 10* s in Fig. 7).

Another process associated with void aperture can be detected when pressure
drops are analysed in detail (Figs. 5, 6, 8 and 9). The opening of aseismic fractures was
not homogenous in our models, and regions along the same fracture segment expe-
rienced closing and opening during stimulation of the fracture intersections. Some
regions are opened suddenly, while others are closed suddenly (e.g. points 1 and 6
in Fig. 6). Since a sudden fracture opening should imply a pressure drop, its sudden
close should be associated with a local fluid pressure rise. Such local pressure rises,
which get quickly dissipated, are likely to be felt more intensively in low-permeability
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fractures, i.e. in fractures that are shear stimulated (this can be detected for example
in the curve t+ 10 s in Fig. 8 for injection in the 60° segment).

Models “60-88” and “88-60" were carried out to explore the influence of the ori-
entation of the fracture in which the fluid was injected. Despite the initial differences
between the two models, their dynamic behaviour is very similar, and both show
similar pressure drop phenomena. Similarly, the variation of the dilation angle or the
length scale does not modify the described processes, but only determines the abso-
lute values of pressure drops (Fig. 12) and the magnitude of microseismicity. Increas-
ing the dilatational angle produces a permeability increase in the shear-stimulated
fractures, allowing the propagation of pressure drops up to the well (Fig. 12a). How-
ever, the pressure drop process is similar to that in models “60-88” and “88-60’, and
is related to the reactivation by sliding of a shear-stimulated fracture and the open-
ing of the tensile conjugated fractures. Figure 13 shows a synthesis of the processes
related to pressure drops. The influence of the injection rate was tested (from 2 kg/s
up to 100 kg/s), producing a reduction of pressure drop values. However, the main
pressure drop values in the system are independent of this parameter.

The same pattern was observed in the model with wing cracks (model “60-hydro”).
When the seismic segment is stimulated, the wing crack is forced to open, produc-
ing a pressure drop and enhancing its propagation. In our simulations, pressure
drops were not related to wing crack propagation, which was associated with the
stress concentration at the edges of the pre-existing fracture. Sliding of the seismic
segment allowed wing crack propagation, given that injection pressure in our mod-
els was lower than the minimum principal stress (o3). This resulted in hydrofracture
propagation with injection fluid pressures below o5 and in accordance with the model
proposed by McClure and Horne (2014), as an explanation of the mixed-mechanism
stimulation for EGS projects (i.e., shear stimulation operates jointly with new tensile
fracture generation).

As previously mentioned, Meyer et al. (2017) concluded that pressure drops could be
produced by the propagation of tensile fractures as a wing crack. This process could be
interpreted in a similar way, as observed in breakdown tests and used to identify the
minimum principal stress (Prabhakaran et al. 2017). In these tests, the generation of a
new hydrofracture produces a pressure drop because the fluid quickly migrates into the
newly formed fracture, oriented normal to the minimum stress. However, the process of
hydraulic fracture propagation as a wing crack due to the stress concentration at fracture
tips was achieved under conditions of fluid pressure below ;. According to the mod-
elling parameters used in our simulations (specifically the injection fluid pressure and
the tensile strength of the material), sudden changes as those observed in breakdown
tests (in which the injection pressure reaches ¢;) are not observed. Moreover, as dis-
cussed above, pressure drops in our models are linked with the tensile fracture open-
ing rather than its propagation, regardless of whether this fracture is a pre-existing or a
newly formed one.

Seismicity and pressure drops
In terms of the seismicity associated with pressure drops, we can distinguish two types
of events. The first type of seismic event is produced in the seismic segments by fluid
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pressurisation, acting as a trigger for the pressure drop phenomenon and usually pro-
ducing high magnitudes (M >1.5). The second type of seismic event is produced at the
aseismic fracture segments next to the regions that are opening. Normally, the latter
events appear as low-magnitude seismic swarms (events with magnitude below one or
zero), produced to accommodate the displacement generated by the sliding of seismic
segments and the opening of the aseismic ones. A similar behaviour can be observed
in the model containing a pre-existing fracture combined with wing cracks. This dual-
ity of the system’s seismicity was proposed and analysed by Fischer and Guest (2011).
In their model, the higher magnitude events are located at the critically stressed natural
fractures, while lower magnitudes occur at pre-existing tensile fractures or new hydrof-
ractures. Such behaviour would be expected in a mixed-stimulation mechanism, where
these different stimulation mechanisms operate jointly (McClure and Horne 2014; Nor-
beck et al. 2018).

A key aspect in our simulations is the tendency of microseismicity to cluster next to
the intersections between fractures. The influence of intersections between fractures on
the seismicity population and location was already proposed by Rutledge et al. (2004).
Their interpretation of microseismicity generated during fluid stimulation in the Cart-
age Cotton Gas field (Texas) showed anomalous dense clusters of seismic events follow-
ing intersections between fractures. Clusters showed location patterns diverging in time,
progressively migrating from the injection zone to far away regions. Additionally, clus-
tering of events was related to fewer and larger precursor events along critically stressed
fractures, while other segments oriented at low angles to o, experienced an aseismic
behaviour. After injection shut-in, new large-magnitude and clustered seismic events
were observed. This phenomenon was interpreted by Rutledge et al. (2004) as a result of
fluid flow forced by slip-induced loading along critical seismic fractures. During injec-
tion, the increase of fluid pressure critically stimulated pre-existing fractures and frac-
ture intersections, allowing fluid migration along the fracture network.

Rittershoffen sensitivity analysis

To evaluate the applicability of our results, stress drops and microseismicity data from
the stimulation of the GRT1 well in Rittershoffen (Meyer et al. 2017) were analysed using
a sensitivity analysis similar to that presented here. The stress and injection conditions
used for these models are described in the Model Setup section. For this setup, pres-
sure drops and seismic magnitudes are lower than those previously described, as stress
magnitudes are substantially lower. The relationship between pressure drops mean val-
ues in the well and in the simulation domain with respect to the seismic magnitudes is
shown in Fig. 14. Pressure drops were not detected at the well for fractures with length
scales below 30 m. The maximum was observed for 50-m-long fractures, while those
longer than 80 m produced pressure drops that could hardly be detected at the well. As
expected, a proportional relationship between the seismic magnitude and pressure drops
in the system was observed. For the range of seismic magnitudes and pressure drops
observed in the Rittershoffen case (box grey area in Fig. 14; from Meyer et al. 2017), we
can infer that fracture sizes of stimulated fractures could range between 40 and 60 m.
A better constraint could potentially be obtained if pressure drop data were linked to
magnitude and epicentre (unreported in Meyer et al. 2017), because in such case, the
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distance to the well could be utilised for the analysis. However, a handicap is that large
uncertainty is normally associated with earthquake location data, normally longer than
hundreds of metres (e.g., Kinnaert 2016).

Furthermore, our models show that the time lapse between the main earthquake event
and the pressure drop at the well occurs after a few seconds (less than 2—4 s). This very
short time interval probably implies that both phenomena will be almost simultaneously
detected in real cases, requiring a highly precise time synchronisation between injection
and seismicity data.

Our models use simplified geometries and are intended to help in investigating and
understanding physical processes, rather than providing a perfect representation of real-
ity. We chose not to use a model with complex multifracture networks, such as that uti-
lised by Meyer et al. (2017), to isolate the main processes controlling pressure drops and
seismicity. With a more complex network, the superposition of effects could attenuate
the phenomena. Simulations by Meyer et al. (2017) with multifracture networks also
produced pressure drops next to the intersections between fractures. However, their
signal in the fluid pressure evolution at the well was attenuated. Additionally, there is a
higher chance that more fractures can act as barriers to the propagation of transient var-
iations of fluid pressure in multifracture systems. Our results confirm the interpretation
by Meyer et al. (2017) that the conditions required to observe pressure drops in wells are
very specific and unlikely to be observed in all reservoir formations. For injection wells
located at a fracture with high transmissibility (i.e. model “88—60”), pressure drops at the
well are potentially observable. However, pressure drops are hardly detectable in situa-
tions where the wells are located in low-transmissibility fractures (i.e. model “60-88”).
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However, as demonstrated by the numerical simulations presented here, pressure drops
may occur in the reservoir even if they are not detected at the injection well.

Our simulations were carried out in isothermal conditions and, therefore, thermal
drawdown effects are not modelled. In terms of stress reduction and seismicity, Gan and
Elsworth (2014) observed that a second seismic cycle is developed related to the thermal
drawdown that could potentially produce a second pressure drop cycle. It would be use-
ful to repeat our analysis with a fully 3D model, since 2D models may enhance the mag-
nitude of early events. Furthermore, the height used in our models (Table 1) is only an
assumption required to take into account the third dimension, assuming plain strain for
height values much larger than the fracture size (Shou and Crouch 1995).

Conclusions

Using simple fracture geometry configurations, we investigated different hypotheses for
the occurrence of fluid pressure drops associated with hydraulic stimulation in Engineered
Geothermal Systems (EGS). The results suggest that two fracture sets can influence pres-
sure drops: one system able to be stimulated by shear (that will produce seismic events) and
another one able to be stimulated by opening-mode fracturing (that will be aseismic). The
tendency of stimulation by shear- or opening-mode fracturing is determined by the opera-
tional parameters (i.e. injection pressure, flow rate, etc.) and the stress state.

In the simulations, a pressure drop can be triggered by a seismic event in a shear-stimu-
lated fracture that is hydraulically connected with a tensile or opening-mode fracture. The
pressure drop is not produced by the new volume created by dilatancy, but by the opening
of the conjugated tensile fracture instead.

This tensile fracture set may be part of the pre-existing fracture network, or alternatively,
be developed as a hydrofracture during the stimulation phase. However, in our simulations,
no pressure drops are observed during hydraulic fracture propagation at the tips of a pre-
existing fracture. Nevertheless, once wing cracks are created, it is possible that slip along
the natural fracture causes a significant aperture change on the splay fracture that can result
in a pressure drop. In addition, we show how seismicity propagates through fracture arrays
while poorly oriented segments slip aseismically. Seismicity is concentrated in critically
oriented fractures near fracture intersections. The pressurisation front propagates non-
smoothly and can be affected by the interaction of a conjugate fracture with other fractures
with tensional or sliding properties. Our simulation results show that natural fracture/splay
fracture interaction is a plausible explanation for the observed pressure drops at the Ritter-
shoffen geothermal site.
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